công thức hàm số lượng giác
|

Công thức hàm số lượng giác đầy đủ nhất kèm bài tập

Phần kiến thức công thức hàm số lượng giác luôn là mối quan ngại lớn đối với các bạn học sinh. Nhiều bạn cho rằng phần kiến thức lý thuyết của hàm số lượng giác quá nhiều nên khó có thể học thuộc cũng như áp dụng được. Đọc ngay bài viết sau đây của trang web thcsmacdinhchi.edu.vn để xem tổng kết công thức hàm số lượng giác cũng như biết thêm những kiến thức bổ ích có liên quan.

Hàm số lượng giác là gì?

Hàm lượng giác là các hàm toán học của góc, được dùng để nghiên cứu tam giác và các hiện tượng có tính chất tuần hoàn khác. Các hàm lượng giác của một góc thường được định nghĩa bởi tỷ lệ chiều dài hai cạnh của tam giác vuông chứa góc đó, hoặc cũng có thể là tỷ lệ chiều dài giữa các đoạn thẳng nối các điểm đặc biệt trên vòng tròn đơn vị.

Khái niệm tỉ số lượng giác của một góc nhọn

Lượng giác

Trong đó:

  • sin : tỉ số giữa cạnh đối và cạnh huyền của góc
  • cos : tỉ số giữa cạnh kề và cạnh huyền của góc
  • tan : tỉ số giữa cạnh đối và cạnh kề của góc
  • cot : tỉ số giữa cạnh kề và cạnh đối của góc

Mẹo ghi nhớ : Sin đi học, Cos không hư, Tan đoàn kết, ,Cot kết đoàn

Tổng hợp công thức hàm số lượng giác đầy đủ nhất

Dưới đây là tổng hợp công thức hàm số lượng giác đầy đủ nhất mà bạn có thể tham khảo. Bên cạnh đó, trong chương trình Toán học cũng có Công thức giới hạn của hàm số – là phần kiến thức thường xuyên xuất hiện trong các kì thi tốt nghiệp mà bạn có thể tham khảo.

Công thức lượng giác cơ bản

1.\ \tan x=\frac{\sin x}{\cos x}

2.\ \cot x=\frac{\cos x}{\sin x}

3.\ \sin^2x+\cos^2x=1

4.\ \tan x.\cot x=1\left(x\ne k\frac{\pi}{2},\ k\ ∈\ Z\right)

5.\ 1+\tan^2x=\frac{1}{\cos^2x}\ \left(x\ne\frac{\pi}{2}+k\pi,\ k\ ∈\ Z\right)

6.\ 1+\cot^2x=\frac{1}{\sin^2x}\ \left(x\ne k\pi,\ k\ ∈\ Z\right)

Công thức cộng lượng giác

1. sin (a ± b) = sin a.cos b ± cos a.sin b

2. cos (a + b) = cos a.cos b – sin a.sin b

3. cos (a – b) = cos a.cos b + sin a.sin b

4.\ \tan\left(a+b\right)=\frac{\tan a+\tan b}{1-\tan.\tan b}

5.\ \tan\left(a-b\right)=\frac{\tan a-\tan b}{1+\tan a.\tan b}

Mẹo nhớ công thức cộng lượng giác: Sin thì sin cos cos sin, cos thì cos cos sin sin dấu trừ. Tan thì tan nọ tan kia chia cho mẫu số 1 trừ tan tan.

Tham Khảo Thêm:  Công thức phép vị tự hay nhất | Bài tập có lời giải Toán 11

Công thức các cung liên kết trên đường tròn lượng giác

Mẹo ghi nhớ: cos đối, sin bù, phụ chéo, tan hơn kém π

Trường hợp hai góc đối nhau:

  • cos (-x) = cos x
  • sin (-x) = -sin x
  • tan (-x) = -tan x
  • cot (-x) = -cot x

Trường hợp hai góc bù nhau:

  • sin (π – x) = sin x
  • cos (π – x) = -cos x
  • tan (π – x) = -tan x
  • cot (π – x) = -cot x

Trường hợp hai góc phụ nhau:

  • sin (π/2 – x) = cos x
  • cos (π/2 – x) = sin x
  • tan (π/2 – x) = cot x
  • cot (π/2 – x) = tan x

Trường hợp hai góc hơn kém π:

  • sin (π + x) = -sin x
  • cos (π + x) = -cos x
  • tan (π + x) = tan x
  • cot (π + x) = cot x

Trường hợp hai góc hơn kém π/2:

  • sin (π/2 + x) = cos x
  • cos (π/2 + x) = -sin x
  • tan (π/2 + x) = -cot x
  • cot (π/2 + x) = -tan x

Công thức nhân

Công thức nhân đôi:

  • sin2a = 2sina.cosa
  • cos2a = cos2a – sin2a = 2cos2a – 1 = 1 – 2sin2a
  • \tan2a=\frac{2\tan a}{1-\tan^2a}
  • \cot2a=\frac{\cot^2a\ -1}{2\cot a}

Công thức nhân ba:

  • sin3a = 3sina – 4sin3a
  • cos3a = 4cos3a – 3cosa
  • \tan3a=\frac{3\tan a-\tan^3a}{1-3\tan^2a}
  • \cot3a=\frac{\cot^3a-3\cot a}{3\cot^2a-1}

Công thức nhân bốn:

  • sin4a = 4.sina.cos3– 4.cosa.sin3a
  • cos4a = 8.cos4a – 8.cos2a + 1
  • hoặc cos4a = 8.sin4a – 8.sin2a + 1

Xem thêm: Công thức đạo hàm cấp n

Công thức hạ bậc chính xác nhất

Thực ra những công thức này đều được biến đổi ra từ công thức lượng giác cơ bản, ví dụ như: sin2a=1 – cos2a = 1 – (cos2a + 1)/2 = (1 – cos2a)/2.

1.\ \sin^2a\ =\ \frac{1-\cos2a}{2}

2.\ \cos^2a=\frac{1+\cos2a}{2}

3.\ \sin^3a=\frac{3\sin a-\sin3a}{4}

4.\ \cos^3a=\frac{3\cos a+\cos3a}{4}

Công thức biến tổng thành tích

Mẹo nhớ: cos cộng cos bằng 2 cos cos, cos trừ cos bằng trừ 2 sin sin; sin cộng sin bằng 2 sin cos, sin trừ sin bằng 2 cos sin.

1.\ \cos a+\cos b=2\cos\frac{a+b}{2}.\cos\frac{a-b}{2}

2.\ \cos a-\cos b=-2\sin\frac{a+b}{2}.\sin\frac{a-b}{2}

3.\ \sin\ a+\sin b=2\sin\frac{a+b}{2}.\cos\frac{a-b}{2}

4.\ \sin\ a-\sin b=2\cos\frac{a+b}{2}.\sin\frac{a-b}{2}

5.\ \tan a+\tan b=\frac{\sin\left(a+b\right)}{\cos a.\cos b}

6.\ \tan a-\tan b=\frac{\sin\left(a-b\right)}{\cos a.\cos b}

7.\ \sin a+\cos a=\sqrt{2}\sin\left(a+\frac{\pi}{4}\right)=\sqrt{2}\cos\left(a-\frac{\pi}{4}\right)

8.\ \sin a-\cos a=\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)=-\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)

9.\ \tan a+\cot a=\frac{2}{\sin2a}

10.\ \cot a-\tan a=2\cot2a

11.\ \sin^4a+\cos^4a=1-\frac{1}{2}\sin^22a=\frac{1}{4}\cos4a+\frac{3}{4}

12.\ \sin^6a+\cos^6a=1-\frac{3}{4}\sin^22a=\frac{3}{8}\cos4a+\frac{5}{8}

Công thức biến đổi tích thành tổng

1.\ \cos a.\cos b=\frac{1}{2}\left[\cos\left(a+b\right)+\cos\left(a-b\right)\right]2.\ \sin a.\sin b=-\frac{1}{2}\left[\cos\left(a+b\right)-\cos\left(a-b\right)\right]

3.\ \sin a.\cos b=-\frac{1}{2}\left[\sin\left(a+b\right)+\sin\left(a-b\right)\right]

Xem thêm: Công thức đạo hàm cấp cao

Nghiệm phương trình lượng giác

Phương trình lượng giác cơ bản:

1.\;\sin a=\sin b\;\Leftrightarrow\left[\begin{array}{c}a=b+k2\mathrm\pi\\a=\mathrm\pi-\mathrm b+\mathrm k2\mathrm\pi\end{array}(k\in Z)\right]

2.\;\cos a=\cos b\;\Leftrightarrow\;\left[\begin{array}{c}a=b+k2\mathrm\pi\\a=-b+k2\mathrm\pi\end{array}(k\in Z)\right]

3. tan a = tan b ⇔ a = b + kπ; (k ∈ Z)

4. cot a = cot b ⇔ a = b + kπ; (k ∈ Z)

Tham Khảo Thêm:  Công thức phép vị tự hay nhất | Bài tập có lời giải Toán 11

Phương trình lượng giác trong trường hợp đặc biệt:

  • sin a = 0 ⇔ a = kπ; (k ∈ Z)
  • sin a = 1 ⇔ a = π/2 + k2π; (k ∈ Z)
  • sin a = -1 ⇔ a = -π/2 + k2π; (k ∈ Z)
  • cos a = 0 ⇔ a = π/2 + kπ; (k ∈ Z)
  • cos a = 1 ⇔ a = k2π; (k ∈ Z)
  • cos a = -1 ⇔ a = π + k2π; (k ∈ Z)

Công thức lượng giác bổ sung

Biểu diễn công thức theo t=\frac{\tan a}{2}  

 

1.\ \sin a=\frac{2t}{1+t^2}\ \ \ \ \ \ \ \ \ \ \ \ 2.\ \cos a=\frac{1-t^2}{1+t^2}

 

3.\ \tan\ a=\frac{2t}{1-t^2}\ \ \ \ \ \ \ \ \ \ 4.\ \cot a=\frac{1-t^2}{2t}

Dấu của các giá trị lượng giác

Góc phần tư số I II III IV
Giá trị lượng giác
sin x + +
cos x + +
tan x + +
cot x + +

Xem thêm: Công thức giới hạn dãy số

Bảng giá trị lượng giác một số góc đặc biệt

Tỉ số lượng giác của 2 góc phụ nhau. ( α + β = 90°)

sin α = cos β cos α = sin β

tan α = cot β cot α = tan β

Bảng tỉ số của các góc đặc biệt

 Bảng giá trị lượng giác một số góc đặc biệt

Cách tính chu kỳ hàm số lượng giác dễ hiểu nhất

Hàm số y= f(x) xác định trên tập hợp D được gọi là hàm số tuần hoàn nếu có số T ≠ 0 sao cho với mọi x ∈ D ta có x+T ∈ D;x-T ∈ D và f(x+T)=f(x). Nếu có số T dương nhỏ nhất thỏa mãn các điều kiện trên thì hàm số đó được gọi là một hàm số tuần hoàn với chu kì T.

Cách tìm chu kì của hàm số lượng giác (nếu có):

  • Hàm số y = k.sin(ax+b) có chu kì là T= 2π/|a|

  • Hàm số y= k.cos(ax+ b) có chu kì là T= 2π/|a|

  • Hàm số y= k.tan( ax+ b) có chu kì là T= π/|a|

  • Hàm số y= k.cot (ax+ b ) có chu kì là: T= π/|a|

  • Hàm số y= f(x) có chu kì T1; hàm số T2 có chu kì T2 thì chu kì của hàm số y= a.f(x)+ b.g(x) là T = bội chung nhỏ nhất của T1 và T2

Bài tập công thức hàm số lượng giác

Dưới đây là một số bài toán để củng cố kiến thức công thức hàm số lượng giác – kiến thức quan trọng của toán 11 mà bạn có thể tham khảo:

Tham Khảo Thêm:  Công thức giới hạn dãy số kèm bài tập có lời giải

Bài 1: Hàm số y = (sinx + cosx)2 + cos2x có giá trị lớn nhất là:

Lời giải:

Ta có:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 2: Cho hàm số y = sin�1+tan� và k ∈ Z.

Khoảng nào dưới đây không nằm trong tập xác định của hàm số?

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Nên khoảng này không nằm trong tập xác định của hàm số

Bài 3: Giá trị nhỏ nhất của hàm số y = 3- 4sin2xcos2x là:

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 4: Trong các hàm số sau, hàm số nào không là hàm chẵn và cũng không là hàm lẻ?

Lời giải:

Xét phương án B:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Do đó, hàm số đã cho không là hàm chẵn và cũng không phải là hàm lẻ

Tổng hợp công thức Toán 11 đầy đủ nhất

Dưới đây thì trang web thcsmacdinhchi.edu.vn tổng hợp công thức Toán 11 thi THPT mà bạn có thể tham khảo để nắm vững kiến thức nhé:

Công thức cấp số nhân, cấp số cộng

Công thức biến đổi tích thành tổng

Công thức xác suất

Phép đối xứng tâm

Công thức nghiệm của phương trình lượng giác cơ bản

Các công thức về hoán vị chỉnh hợp tổ hợp

Công thức nhị thức niu tơn

Tính tổng các hệ số trong khai triển

Tìm hệ số trong khai triển

Công thức cấp số nhân lùi vô hạn

Công thức cấp số nhân lớp 11

Các công thức cấp số cộng

Công thức dãy số

Công thức tính tổng dãy số

Công thức tính công bội của cấp số nhân

Công thức tính công sai của cấp số cộng

Công thức logarit và đạo hàm

Công thức cộng xác suất

Công thức nhân xác suất

Tổng kết công thức hàm số lượng giác

Thông qua bài viết trên đây của trang web thcsmacdinhchi.edu.vn,hy vọng bạn đọc đã có thể biết được công thức hàm số lượng giác đầy đủ nhất. Tiếp tục theo dõi trang web của chúng tôi để bổ sung thêm nhiều kiến thức về toán học, vật lý cũng như những môn học khác nhé.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *